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Motivation and previous 
result
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Motivation

measure of indirect CPVmeasure of direct CPV

ΔI=3/2 decay to I=2 final state, amplitude A
2
 

ΔI=1/2 decay to I=0 final state, amplitude A
0
 

     (δ
I
 are strong scattering phase shifts.)

(experiment)

● Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, 
requires violation of CP.

● Amount of CPV in Standard Model appears too low to describe measured M/AM 
asymmetry: tantalizing hint of new physics.

● Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in 
K0→ππ:

● In terms of isospin states: 

● Small size of ε' makes it particularly sensitive to new direct-CPV introduced by many 
BSM models. 
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Overview of calculation
● Hadronic energy scale << M

W
 – use weak effective theory.

● K→ππ decays require single insertion of ΔS=1 Hamiltonian:

perturbative Wilson coeffs.

Imaginary part solely responsible for CPV 
(everything else is pure-real)

10 effective four-quark operators

renormalization 
matrix (mixing)
Use RI-SMOM and 
convert to MSbar 
perturbatively

LL finite-volume correction

(lattice)
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Summary of published results

● A
2
 computed on RBC/UKQCD 643x128 and 483x96 2+1f Mobius DWF ensembles 

with the Iwasaki gauge action and physical pion mass. 
● a-1= 2.36 GeV and 1.73 GeV resp - continuum limit taken.
● Statistical errors sub-percent, dominant systematic errors due to truncation of PT 

series in computation of RI-SMOM to MSbar matching and Wilson coefficients.
● 10% and 12% total errors on Re(A

2
) and Im(A

2
) resp. 

● A
0
 computed on 216cfgs of 323x64 Mobius DWF with Iwasaki+DSDR gauge action and 

physical pion mass. 
● G-parity BCs in 3 directions to give physical kinematics.
● Single, coarse lattice with a-1= 1.38 GeV but large physical volume to control FV errors.

● 21% and 65% stat errors on Re(A
0
) and Im(A

0
) due to disconn. diagrams and, for 

Im(A
0
) a strong cancellation between Q

4 
and Q

6
.

● Dominant, 15% systematic error is due again to PT truncation errors exacerbated by 
low renormalization scale 1.53 GeV.

[Phys.Rev. D91 (2015) no.7, 074502]

[Phys.Rev.Lett. 115 (2015) 21, 212001]
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Result for ε' 

● Re(A
0
) and Re(A

2
) from expt.

● Lattice values for Im(A
0
), Im(A

2
) and the phase shifts

(calculated)=
(experiment)

● Error is dominated by that on A
0
.

● Total error on Re(ε'/ε) is ~3x the experimental error.
● Result is in tension with Standard Model at 2.1σ level.
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The “ππ puzzle” and 
multi-operator fits
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On the importance of the ππ state
● Understanding I=0 ππ system is crucial:

– Energy is needed for time dependence of correlation function 
from which we extract finite-volume K→ππ matrix element.

– Phase shift enters Lellouch-Luscher finite-volume correction to 
matrix element.

– Phase shifts also enter in formula relating A
I
 to ε' itself

● 2015 calculation of δ
0
 in 2σ tension with dispersion theory 

calculation: 

● This observation prompted increased focus on ππ system.  
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Increased statistics

● To resolve the “pi-pi puzzle” we increased statistics from 216 to 
1438 (a 6.6x increase!). 
However this did not resolve the situation:

216 cfgs
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Resolving the pi-pi puzzle

● Most likely explanation is excited state contamination masked by 
rapid growth of statistical errors.

● To resolve this we turned to multi-operator fits which provide much 
greater resolution on excited states time dependence alone.

round-the-world single pion propagation
small compared to errors  - drop

● Obtain parameters by simultaneous fitting to matrix of correlation 
functions 

● Increased from 1→3 operators:

● 741 configurations measured with 3 operators. 

[cf T.Wang Monday]
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Effect of multiple operators on ππ

Result compatible with dispersive value

t
min

 of fit

fitted energy
(lattice units)
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Effect of multiple operators on K→ππ 
(case I)

ππ(111)

ππ(111)+σ ππ(111)+ππ(311)+σ

[741 configs  PRELIMINARY]

Ground-state projected data
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Effect of multiple operators on K→ππ 
(case II)

ππ(111)

ππ(111)+σ ππ(111)+ππ(311)+σ

[741 configs  PRELIMINARY]

Dramatic improvement in both precision and
plateau quality!
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Other systematic error 
improvements



  

Systematic error improvements

● NPR error large due to use of 1-loop PT to match to MSbar at low, 1.53 GeV 
renormalization scale. 

● Since 2015 have improved NPR error  15% → 8%  (preliminary) by increasing scale to 
2.29 GeV using step-scaling procedure. 

● Inclusion of dim.6 gauge-invariant operator G
1
 which mixes with Q

i
 under 

renormalization, effects demonstrated to be %-scale as expected.

● Do not expect significant improvement in Wilson coeffs error from scale increase as it is 
overshadowed by use of PT to cross the charm threshold (1.29 GeV).

● Working on circumventing this by computing 3→4 flavor matching non-perturbatively.

● Requires μ‹‹ m
c 
. At these low energies, MOM-scheme NPR severely hampered by 

increased mixing with tower of gauge-noninvariant operators. 
● Circumvent using position-space NPR which does not require gauge fixing. 

 

[G. McGlynn arxiv:1605.08807]

NPR+Wilson Coefficients
[RBC&UKQCD  PRL 115 (2015) 21, 212001]

 [PoS LATTICE2016 (2016) 308]

[cf Masaaki Tomii
    Tuesday]



Related projects on the horizon:

● Performing calculation taking advantage of modern multi-operator techniques to fit excited-
state ππ contributions directly, without G-parity BCs. 

● Laying the groundwork for non-perturbatively computing the effects of isospin breaking and 
electromagnetism.

● Study of complete, non-perturbative calculation of Wilson coefficients

Discretization error

● Currently have results only on single lattice with coarse lattice spacing 
a-1=1.38(1) GeV. 

● Require second lattice spacing. Going to finer lattice requires more lattice sites; 
prohibitively expensive for current gen. computers.

● Plans for repeating calculation on multiple lattices on next-Gen machines (Aurora, 
Perlmutter). Extensive code preparation in progress to support GPU port.

[EPJ Web Conf. 175 (2018) 13016]

[EPJ Web Conf. 175 (2018) 13014, arXiv:1711.05768]

● Also: Calculation of non-EW NNLO Wilson coefficients is close to being published.

● Results suggest only small NNLO corrections to PT matching over charm threshold. 
Depending on publication timing our quoted WC systematic may be smaller!

[Cerdà-Sevilla, Gorbahn, Jäger, Kokulu]

[cf. M. Cerdà-Sevilla  Kaon 2019 talk]

[cf. D. Hoying Lattice 2019 talk]
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Advances in statistical 
techniques
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Dealing with autocorrelations
● With increased statistics we now have evidence for (limited) 

autocorrelation effects: τ
int

~ 4 MDTU (1 cfg).

● Naively expect ~1.4x larger errors. 
● Standard approach is to bin (average) data over blocks sufficiently 

large to make the blocks independent.
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● Pion and kaon energies behave as expected with binning 

“error bars” indicate 
estimated error-on-the-error 
~σ/sqrt(n/B)
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I=0 ππ 2pt function

0 2 4 6 8 10
bin size
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● ππ errors continue growing with bin size and do not stabilize. Why?

● Covariance matrix is 66x66 here!

● As bin size increased, fewer data points enter determination of 
covariance matrix           matrix becomes less and less well resolved.

● Fluctuations of low eigenvalues increase, causing error growth 
unrelated to autocorrelation 
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Scrambled data
● Isolate effect of loss of resolution of covariance matrix by 

randomly scrambling data to destroy autocorrelations
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● Error growth essentially the same!
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Block jackknife

● To prevent loss of resolution of covariance matrix while still taking 
into account autocorrelations, we perform block jackknife

Regular, binned jackknife: generate n/B “reduced ensembles” of n/B-1 
numbers by successively dropping values

x n/B

● With binning, covariance matrix obtained from just n/B-1 
numbers 

n/B binned 
values
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Block jackknife II

block jackknife: From unbinned data generate n/B reduced 
ensembles but of size n-B values by throwing away successive 
blocks of size B

x n/B

● Covariance matrix obtained from n-B values !

● Jackknife procedure ensures correct statistical error

B

n 
unbinned 
values
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I=0 ππ 2pt function with block 
jackknife
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Now obtain expected behavior
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Goodness of fit

● Large number (741)  of configurations encourages more sophisticated 
statistical techniques.

● In particular, well-controlled correlated fits allow for reliable goodness-of-
fit metrics which aid fitting and systematic error estimation. 

● Goodness-of-fit described by a p-value - the probability of getting a 
worse fit allowing for only statistical fluctuations. 

With covariance matrix obtained from sample covariance:

Test statistic

χ2 distribution

degrees of freedom

measurement at t

fit function evaluated at t
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P-value issues

● Despite high degree of stability under changing fit ranges, goodness of 
fit for ππ typically quite poor.

● Importance of reliable ππ fits strongly motivates resolving this issue.

● Key is to recognize that the χ2 distribution does not account for 
fluctuations in the covariance matrix over the population.

● When cov. mat. is determined from data, finite statistics effects broaden 
the distribution of q2 as the matrix fluctuates along with the data.

● For ensembles of uncorrelated Gaussian data (not QCD path integral-
distributed!) the corrected distribution can be determined analytically:  
      It is the Hotelling T2 distribution,  T2(k, n-1)  for n samples.

● However in general there is no analytic result. 

● Even if we assume Gaussian data, numerical tests indicate strong 
autocorrelation effects that can only be removed by binning to large bin 
sizes (a no-go for us!).
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Non-overlapping block bootstrap 
(NBB)

● The bootstrap technique allows us to estimate properties of the 
population from just one ensemble, by randomly resampling (with 
replacement).

● The (non-overlapping) block variant resamples blocks rather than 
single configurations, much like block jackknife, in order to 
account for autocorrelations:

x N
boot

B
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Computing p-values via bootstrap
● Use NBB to directly compute the distribution of q2!

✔ No normality assumption
✔ Blocking accounts for autocorrelations without binning

● Minor subtlety: bootstrap ensemble means       distributed about 
ensemble mean      not population mean

● Results in broader distribution of q2 with larger mean
● Correct by “recentering”:  

fit to original ensemble
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I=0 ππ fit bootstrap p-value
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p-values for uncorrelated fits!

● Conventional wisdom is that one cannot obtain the goodness-of-fit 
for uncorrelated fits. Using the bootstrap technique we can!
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Conclusions
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Conclusions

● Multi-operator techniques appear to resolve discrepancy with dispersive 
prediction for I=0 ππ phase shift.

● Marked improvement in quality of plateaus in K→ππ, better control over 
excited state systematics.

● Programmes for reducing other systematic errors in progress. 

● Already achieved 2x improvement in NPR error via step scaling.

● Potential near-term reduction in Wilson coeff. systematic through NNLO 
PT calculation. In longer term we aim for a non-perturbative matching 
through the charm threshold.

● Advanced statistical techniques allow for more reliable p-values and 
enable us to account for mild autocorrelation effects without exploding 
our statistical error through binning.

● Expect no further hurdles to completion of project and we aim to publish 
within the next few months.

Thank you!
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Is the Hotelling distribution 
sufficient?

● Numerical experiments with fake data show Hotelling T2 relatively tolerant of 
non-normality.

● However T2 relies on independent configurations: extremely sensitive to 
autocorrelations. 

● Even with binning, slow convergence to true distribution:
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● Wish to avoid binning due to explosion in statistical error from 
reduced resolution of covariance matrix

dramatically 
underestimates p

Fake gaussian data
400 cfgs, sep ~ τ

int
=5

(Metropolis algorithm)
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Demonstration II - log-normal
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Autocorrelations, cfg sep ~ τ
int

Stat error and bias fall as  
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